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Abstract 

Background. Four COVID-19 vaccine candidates developed by Pfizer, Moderna, University 

of Oxford/ Astra Zeneca (also Oxford/ Serum Institute of India) and ICMR/ Bharat Biotech 

have been granted emergency use authorization in the democratic world following 

established clinical trial procedures in their respective countries. Vaccination of the general 

public is expected to begin in several weeks. We consider the question of whether people 

who have received the vaccine can be selectively and immediately cleared to return to normal 

activities, including hassle-free travel. 

Methods. We use a delay differential equation model developed previously by our group to 

calculate the effects of vaccinee “immunity passports” on the spreading trajectories of the 

disease. We consider default virus strains as well as high-transmissibility variants such as 

B1.1.7 in our analysis. 

Results. We find that with high vaccine efficacy of 80 percent or greater, vaccinees may be 

immediately cleared for normal life with no significant increase in case counts. Free travel of 

such vaccinees between two regions should not jeopardize the infection control performance 

of either. At current vaccine administration rates, it may be eight months or more before 

COVID-19 transmission is significantly reduced or eliminated. With lower vaccine efficacy 

of approximately 60 percent however, social as well as travel restrictions for vaccinees may 

need to remain in place until transmission of the disease is eliminated. 

Conclusions. Designing high-efficacy vaccines with easily scalable manufacturing and 

distribution capacity should remain on the priority list in academic as well as industrial 

circles. Performance of all vaccines should continue to be monitored in real time during 

vaccination drive with a view to analysing socio-demographic determinants if any of 

efficacy, and optimizing distribution accordingly. A speedy and efficacious vaccination drive 
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will provide the smoothest path out of the pandemic with the least additional caseloads, death 

toll and socioeconomic cost. 
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Introduction 

Over the past month, four vaccine candidates have received emergency use authorization in 

democratic countries following rigorous trial procedures and have started being administered 

worldwide. These are the Pfizer and Moderna candidates based on the mRNA platform, the 

University of Oxford/ Astra Zeneca/ Serum Institute of India candidate based on viral vector 

and the ICMR/ Bharat Biotech candidate based on inactivated whole virus. The first two 

candidates1,2 have reported efficacies of almost 95 percent in phase 3 clinical trials. The third 

candidate3 has reported 60 percent efficacy with the intended dosing regimen and 90 percent 

with an unplanned administration regimen. More trials are underway to determine the optimal 

dosing pattern. The fourth candidate4,5 has reported encouraging results in the early trials; 

participant enrolment for the phase 3 trial has been completed but the trial itself has not. 

Thus, the efficacy data for the Oxford/ AZ/ SII and ICMR/ BB vaccine candidates are not 

final yet. Over and above this, Russia has approved a vector vaccine called Sputnik 5 

bypassing some of the trial protocols; formal validation of this vaccine is currently underway 

in other countries. From the cold chain perspective, the Pfizer vaccine requires to be stored at 

approximately −75 oC, the Moderna candidate requires −20 oC while the Oxford/ AZ/ SII and 

ICMR/ BB candidates can be stored at +2 to +8 oC; Sputnik again needs −18 oC or lower. 

Mathematical modeling studies of COVID-19 dynamics post-vaccination started emerging as 

soon as the first vaccines were approved. Swan, Goyal, Bracis et. al.6 have performed a 

detailed analysis of the roles played by different vaccine efficacy metrics. Several studies7-10 

find that vaccinating high-contact people first will have the greatest beneficial effect on the 

spread of the disease. Foy, Wahl, Mehta et. al.11 find that priority vaccination of elderly and 

vulnerable people is best for reducing COVID-19 deaths. They also find that continuing with 

social restrictions such as six-foot separation and mask regulations during the vaccination 
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drive will best mitigate disease spread. This latter point has been stated more emphatically by 

Galanti, Pei, Yamana et. al.12 who find almost zero difference between vaccination and no 

vaccination if all non-pharmaceutical interventions are relaxed. Moore, Hill, Tildesley et. al.13 

have an equally bleak outlook for a 75 percent effective vaccine with high surge in cases and 

deaths if social restrictions are relaxed even one year after vaccination starts. Grundel et. al.9 

also advocate the enforcement of social restrictions during the vaccination drive. Matrajit and 

Eaton14 find a similar conclusion applicable to long term care facilities. A more optimistic 

view may be found in Alvarez, Bravo-Gonzalez and Trujillo-de Santiago15 who recommend 

strong social restrictions for only the first three months of vaccination and Betti, Bragazzi, 

Heffernan et. al.16 who again permit a gradual relaxation of non-pharmaceutical interventions 

starting from the fourth month. 

From the general public’s perspective, continued social restrictions for vaccinees appears 

extremely disruptive. If we have got the vaccine, we would at least hope to socialize freely 

with others who have been vaccinated as well. We would also hope to travel without testing 

for virus before and after the journey, wearing a mask in an already claustrophobic airplane 

economy class cabin or quarantining for days upon arrival. From an economic perspective, 

social restrictions during vaccination drive will amount to continued strain on the state’s 

fiscal resources – any relaxation or exemption will act as a lifeline. Our quest here is to find 

such an exemption – specifically, we ask whether social restrictions can be immediately and 

preferentially relaxed for those individuals who have received the vaccine. Hereafter, we 

refer to this strategy as “selective relaxation”. With ideal vaccines, the answer to this 

question would have been obvious. However, the actual COVID-19 vaccines are not 100 

percent efficacious, which raises the issue of whether unrestricted (or at least significantly 

expanded) social activity and mobility on the part of vaccinees may fuel a wave of cases. We 

address this question in the remainder of this Article. 
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Methods 

We use a compartmental or lumped parameter delay differential equation model developed 

by our group to analyse the various situations of interest. We have selected this model 

because all parameters here are directly related to the disease or to control measures17. This 

feature enables the model to generate realistic epidemiological curves with default 

assumptions18,19 and make subtle predictions regarding the spreading trajectories with 

temporary immunity20. Moreover, the model is easily generalizable to new situations, with 

vaccination and travel being the ones considered in this Article.  

We present here only the outline of the model, with the full equations and derivation being 

given in §1 of the Supplementary Data. The model is applicable to any region with good 

interaction among its inhabitants. The baseline model (with neither vaccines nor travel) 

features a single dependent variable y(t), the cumulative count of COVID-19 cases as a 

function of time. With vaccines but no travel, we require three dependent variables : y(t) the 

cumulative count of cases among the non-vaccinated group, z(t) the cumulative count of 

cases among the vaccinated group and v(t) the cumulative number of people who have been 

vaccinated. We classify a person as vaccinated only after s/he has received the second dose of 

a two-dose regimen and cleared the subsequent immunogenicity period of one or two weeks, 

depending on the vaccine type. To model travel, we consider two regions, City 1 and City 2, 

which are connected through travel links; in this case, our model features eight variables in 

total. 

The major parameters of interest are as follows. 

• Vaccine efficacy η : We define this as the probability that a vaccinated person is 

immune to the disease. Here we assume that vaccines confer either full sterilizing 

immunity or zero transmissibility-reducing immunity.  
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• Mobility index Req : Equivalent reproduction number Req is best explained through an 

example. The statement “vaccinees have an Req of 3” means that vaccinated people 

interact with others at such a rate that, were all cases to have that interaction rate and 

were everyone else to be susceptible, then the reproduction number R of the disease 

would have been 3. We give the mathematical definition of Req in §1 of the 

Supplementary Data; here we emphasize that it is a mobility index and not the actual 

reproduction number characterizing the outbreak. 

• Travel rate γ : This is the fraction of all people of one region who travel to the other 

region each day. Since it is typically very small, we measure it in basis points i.e. one 

percent of a percent. 

• Travel amplification factor k : A COVID-19 case travelling on board a flight, train or 

bus might spread the disease to other passengers in the vehicle. We define k to be the 

number of additional passengers who get infected by one travelling case, assuming 

that the former are all susceptible. 

We shall solve the model using numerical integration in the software Matlab. The method 

will be 2nd order Runge Kutta with a time step of 1/1000 day. The spatial domain of solution 

will be a Notional City of total population 3,00,000; we shall assume everyone to be 

susceptible initially and shall seed the model with a small number of initial cases. We shall 

run the simulations until the region has less than one active case for fourteen consecutive 

days, at which point we shall terminate the run and declare the epidemic to be over. Details of 

the initial and terminal conditions are again given in §1 of the Supplementary Data. 
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Results 

We separately consider the two situations where there is no travel (or equivalently, all 

travellers are quarantined) and where there is travel. In each case, the parameters we shall use 

to measure the infection control performance will be the duration T of the outbreak, the total 

case count X at the end of the outbreak, the vaccinated case count Z at the end of the outbreak 

and the vaccination fault ratio f, defined as the maximum ratio of vaccinated cases to total 

vaccinees at any stage in the outbreak. Since f is small, we report it as a percentage. 

 No travel 

The model we use is Equations (5-7) from the Supplementary Data. In this model, people 

who have not been vaccinated have a low interaction rate with other people (both vaccinees 

and non-vaccinees) while those who have been vaccinated have a higher interaction rate with 

others (again of both classes). Let the vaccines be distributed at the constant rate 600/day, 

which amounts to vaccination of the entire population in 500 days – a realistic estimate for 

many advanced countries. The vaccine efficacy shall remain variable. Let the unvaccinated 

people have a mobility level corresponding to Req=1·15; this describes severe restrictions but 

not a full lockdown, since the latter can drive R below unity. The mobility of the vaccinated 

people shall again remain variable.  

Table 1 presents the region’s infection control performance for three different vaccine 

efficacies and three values of vaccinee mobility.  
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Table 1 : Selective relaxation performance 

η \ Vaccinee Req 2·0 3·0 5·0 

60 

T=360 

X=29,000 

Z=3600 

f=2·67 

T=385 

X=68,000 

Z=8750 

f=6·96 

T=960 

X=1,29,000 

Z=20,600 

f=13·3 

75 

T=298 

X=11,000 

Z=663 

f=0·576 

T=349 

X=24,000 

Z=1850 

f=1·40 

T=380 

X=69,000 

Z=5800 

f=4·68 

90 

T=243 

X=5300 

Z=95 

f=0·102 

T=259 

X=6450 

Z=128 

f=0·129 

T=296 

X=10,600 

Z=265 

f=0·230 

Effect of selective relaxation on the spread of the disease, as a function of vaccine efficacy η (percent) 

and vaccinee mobility Req. Non-vaccinee mobility is fixed as Req=1·15. T denotes the time (days) to 

the end of the outbreak, X the total case count at the end, Z the vaccinee case count at the end and f 

the vaccine fault ratio (percent) as defined in the text. For comparison, in the absence of vaccination, 

a mobility level (for everyone) of Req=1·15 results in 76,000 cases, Req=2·0 results in 2,39,000 cases, 

Req=3·0 results in 2,82,000 cases and Req=5·0 results in 2,98,000 cases. 

In Figure 1, we present a typical time trace of the disease evolution. 
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Figure 1 : Evolution of the epidemic for the situation considered in the central cell of Table 1 i.e. 

η=75 percent and vaccinee mobility Req=3·0. Blue line denotes unvaccinated cases, green line 

vaccinated cases and red line the total number of vaccinees. Grey and cyan bars denote the 

epidemiological curve or epi-curve, i.e. the weekly case counts in the unvaccinated and vaccinated 

groups respectively. We have scaled them down by a factor of seven so that the envelopes of the bars 

become the derivatives y  and z . The legend W/7 indicates this. ‘k’ denotes thousand and ‘L’ 

hundred thousand. 

We can see that although the outbreak technically lasts for 352 days, the epi-curve has 

become of negligible size by the 300-day mark. 

 Travel 

We now consider the case where two cities with potentially different infection control 

performance are linked by travel. As mentioned in the Methods Section, the key parameters 

characterizing travel are the rate γ and the amplification factor k. Since we want to examine 

whether vaccinees can travel without hassle, we shall consider only the case where 

vaccinated people travel between the two cities. The model is Equation (19) from the 

Supplementary Data. 
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We shall consider situations where two cities taken from Table 1 are coupled. In each case, 

City 1 shall be the better performer and City 2 the worse performer. Our primary objective 

will be to find whether the ingress of travellers from City 2 can spoil the infection control 

performance of City 1. Again, we shall present the data in a tabular form, with γ and k being 

the variable parameters; in each cell we shall report the end-stage infection control 

performance metrics for City 1. For the first set of runs, Table 2, we let Req=3·0 in both cities; 

let City 1 have 90 percent vaccine efficacy and City 2 have 75 percent.  
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Table 2 : Effects of travel 1 

γ \ k 2 5 10 

20 

T=347 

X=6800 

Z=142 

f=0·134 

T=347 

X=7000 

Z=151 

f=0·138 

T=347 

X=7300 

Z=165 

f=0·147 

50 

T=345 

X=7300 

Z=164 

f=0·143 

T=345 

X=7800 

Z=185 

f=0·154 

T=345 

X=8600 

Z=220 

f=0·173 

100 

T=342 

X=8000 

Z=199 

f=0·158 

T=343 

X=9000 

Z=240 

f=0·182 

T=345 

X=10,700 

Z=309 

f=0·226 

Infection control performance of City 1 (η=90 percent, Req=3) as a result of travel coupling with City 

2 (η=75 percent, Req=3), as a function of the travel rate γ (basis points) and the amplification factor 

k. The metric T denotes the time (days) to the end of the outbreak, X the total case count at the end, Z 

the vaccinee case count at the end and f the vaccine fault ratio (percent), all in City 1. For 

comparison, in the absence of travel, City 1 has total 6450 cases over 259 days while City 2 has total 

24,000 cases over 349 days.  

In Table 3, we consider a very similar scenario except that we reduce the vaccine efficacy in 

City 2 to 60 percent. 
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Table 3 : Effects of travel 2 

γ \ k 2 5 10 

20 T=384 

X=8300 

Z=202 

f=0·165 

T=384 

X=9500 

Z=254 

f=0·200 

T=384 

X=11,000 

Z=336 

f=0·258 

50 T=382 

X=11,000 

Z=305 

f=0·232 

T=382 

X=14,000 

Z=423 

f=0·316 

T=383 

X=18,000 

Z=602 

f=0·447 

100 T=379 

X=14,000 

Z=463 

f=0·336 

T=380 

X=19,000 

Z=673 

f=0·484 

T=383 

X=27,000 

Z=980 

f=0·705 

Infection control performance of City 1 (η=90 percent, Req=3) as a result of travel coupling with City 

2 (η=60 percent, Req=3), as a function of the travel rate γ (basis points) and the amplification factor 

k. The metric T denotes the time (days) to the end of the outbreak, X the total case count at the end, Z 

the vaccinee case count at the end and f the vaccine fault ratio (percent), all in City 1. For 

comparison, in the absence of travel, City 1 has total 6450 cases over 259 days while City 2 has total 

68,000 cases over 385 days.  

This completes the presentation of the most salient results – for a variety of other results and 

their interpretation we must refer to §3 of the Supplementary Data. 
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Discussion 

We again consider separately the cases without and with travel. 

 No travel 

Analysis of the initial spread of COVID-19 before any kind of restrictions were applied21-24 

has yielded a reproduction number of approximately 3. Hence the situation Req=3, which we 

have considered in Table 1, is indicative of completely normal activity on the part of the 

vaccinees, with the original strain/s of the virus. The situation Req=5 might correspond to 

normal activity with a highly transmissible virus variant such as the B1.1.725 or N501Y26 

form, while Req=2 can indicate either normal life with a low-transmissibility strain or partial 

social restrictions with the other strains.  

We can see that with selective relaxation, the 60 percent effective vaccine causes less than 10 

percent final infection level only for the lowest of the three Req’s considered while the 90 

percent effective vaccine results in a very low infection count in all cases. With a highly 

effective vaccine, selective relaxation appears to be a safe and robust reopening strategy 

which leads to elimination of the disease in time while constantly expanding socioeconomic 

activities. A general lifting of restrictions can be announced when disease transmission has 

significantly reduced or ceased. We can qualitatively explain the effectiveness of the 

selective relaxation strategy with the help of two arguments. 

The first argument focusses on the reproduction number R. With no interventions, COVID-19 

has an R0 of 3 means that, when everyone is susceptible, one person spreads the disease to 

three other people during the course of everyday interaction. When vaccinees interact 

normally among each other, if two out of every three are immune (i.e. vaccine efficacy is 67 

percent) – or more – then R will decrease below unity and the epidemic will die out in time. 

The second argument focusses on an individual vaccinee, whom we call A. Vaccine efficacy 
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of 90 percent implies 10 percent failure probability which does not sound very small. 

However, 10 percent is the probability that A catches the disease given an exposure. 

Transmission is a two-person process – if A interacts only with other vaccinees, then the 

probability that they have the disease and can expose A to the pathogen also reduces to 

(approximately) 10 percent. A’s total contraction probability therefore reduces to 

approximately 1 percent i.e. the disease contraction probability is quadratic and not linear in 

the vaccine failure probability.  

Of course, during any reopening activity, the case counts in both unvaccinated and vaccinated 

populations will need to be monitored continuously. Given a time series, our model can be 

used to predict the future performance, and restrictions on vaccinees will have to be 

reimposed if it turns out that they are driving spread. The duration of about 250-300 days to 

the end of the outbreak which we have found in Table 1 is, we believe, a reasonably robust 

prediction. This is because a reopening plan is built into the outbreak’s evolution – it ends 

with society in normal life and not in a restricted mode of operation. As Table 1 shows, the 

duration depends strongly on the vaccine efficacy and less sensitively on the mobility of the 

vaccinees – further numerical work (not shown here) yields the dependence of the duration 

on the non-vaccinee mobility to be similarly weak. Note also that the outbreak ends at 

approximately 50 percent vaccination coverage, so the termination is not a “herd immunity” 

effect. 

 Travel 

In §3 of the Supplementary Data, we argue that k=5 is perhaps a typical situation and k=10 a 

worst-case. Similarly, 100 basis points or one percent of a city’s population travelling every 

day also appears like an overestimate. Hence at least one scenario of Tables 2 and 3 

represents a game against nature.  
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In these Tables, we can see a drastic difference in City 1’s infection control performance 

depending on whether the vaccine efficacy in City 2 is 75 or 60 percent. In the former 

situation, the infection counts in all cases remain within twice of that in the absence of travel; 

in the latter situation, the counts may increase by as much as five times. Needless to say, 

travel coupling of two cities with 90 percent vaccine efficacy poses negligible risk in all 

cases. We can find similar results (not shown) for travel coupling between other city pairs in 

Table 1. In a nutshell, we can say that free travel between regions which are individually in 

control of their outbreaks is permissible; free travel to and from a region with an out-of-

control outbreak is not. Again, monitoring of the situation will be required if travel links are 

opened with the disease still prevalent. We must remember that all the results are predicated 

on the hassle-free travel of vaccinees alone and not of a mixed group. Hence, arrangements 

should be made so that vaccinees do not mix with non-vaccinees during travel. For example, 

there can be special flights and trains for people of each category, with the vaccination status 

being verified together with the travelling ticket.  

 Limitations 

The limitations of the analysis come from the various assumptions in the model. One set of 

limitations is common to any lumped-parameter or compartmental model. This is that when 

the absolute number of cases becomes very low, the model ceases to remain valid – the 

deterministic evolution is replaced by a stochastic process. Hence, predictions regarding the 

end-stage of the disease might not be accurate. Other limitations arise from assumptions 

regarding vaccine immunity, vaccinee mobility etc. We have tried wherever possible to 

ensure that errors are on the side of caution, and have presented a detailed discussion of this 

aspect in §2 of the Supplementary Data. 
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Conclusion 

In this Article, we have identified immediate and preferential relaxation of restrictions for 

vaccinees as a feasible path to the elimination of the dreadful pandemic called COVID-19. 

This path features a continuous growth of economic and social activities during the 

vaccination drive. The incentive of immediate benefits will also induce people to receive the 

immunizations and hence automatically combat vaccine hesitancy27. With this mode of 

operation, and with current encouraging vaccine efficacies, we find a timeframe of 

approximately eight months before transmission reduces to negligible levels. We also find 

that vaccinated people can be allowed to travel freely between regions of good infection 

control performance. This finding should act as a boost to the travel industry which is 

currently reeling from the effects of severely reduced demand. 

While our primary finding and its associated message is hopeful, there are also some 

cautionary takeaways. In particular, a 60 percent effective vaccine does not appear to be 

adequate for issuing immunity passports. Until and unless high-efficacy vaccines are 

widespread, research on improving vaccine efficacy should be pursued at full throttle. “In the 

field” efficacy estimations should continue for all approved vaccines, especially to identify 

socio-demographic determinants of efficacy if any.  

In conclusion, the initiation of vaccination drives marks the beginning of the end of 

humanity’s struggle against COVID-19. Our immediate objective over the remaining few 

months of this battle has to be to minimize the caseloads, death tolls and disease burden from 

the socioeconomic perspective. We hope that the prescription we have suggested here may 

prove effective in this respect.  

---- o ---- 
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SUPPLEMENTARY DATA  

to “Impact of immediate and preferential relaxation of 

social and travel restrictions for vaccinated people on 

the spreading dynamics of COVID-19 : a model-based 

analysis” 

by B Shayak, Mohit M Sharma and Anand K Mishra 

 

In this Supplement we cover several issues which could not be treated in the 

Article proper due to lack of space. Throughout, a figure or table numbered 

“n” always refers to the Article proper while a figure or table numbered “Sn” 

refers to this document. The same holds for References. Since equations exist 

in the Supplement alone, we have labelled them with numbers only and no 

“S” prefix. 

---- o ---- 

 

 §1  MODEL DERIVATION AND EQUATIONS 

We begin with a very brief recap of the model proposed in our prior works 

[17-20] (cited in the Article proper). 

 

RECAPITULATION 

Like every lumped-parameter or compartmental model, ours is applicable in 

any region with good connection among its inhabitants, such as a 

neighbourhood, town, village, or smaller city. Metropolitan cities may need 

to be partitioned into several regions, depending on internal connectivity. The 

model treats the transmission of disease as a process of interaction between 

at large cases and susceptible targets; its underlying philosophy is 
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Rate of emergence Per-case spread- Probability of Number of

of new cases ing rate target susceptibility at large cases
=  

       
       
       

  . (0) 

 

Defining y (t) as the cumulative case count, the left hand side above is dy/dt. 

The per-case spreading rate, which we call m0, is the product of two quantities 

– the rate at which a random person (and hence an at large case who is 

unaware of infectious nature) interacts with other people, and the probability 

that an interaction with a susceptible target results in a transmission. The 

interaction rate is governed by the degree of social restrictions in place while 

the transmission probability is determined by masking and sanitization; 

collectively, m0 embodies the effects of non-pharmaceutical interventions 

[17]. The target susceptibility probability factors in the immune response to 

the disease; with permanent immunity (and the approximations of 

instantaneous recovery and zero mortality), it takes the form 1 − y/N where 

N is the region’s total population. The number of at large cases has the 

following mathematical form : 

 
( )( ) ( ) ( )3 1 3 2

1 3 1

( ) 1 ( ) 1 ( )

( )

n y y y y t T y y t

y t

μ μ μ τ

μ μ τ

= − − − − − − − −

− −
   , (1) 

where μ1 is the fraction of cases who are asymptomatic, μ3 is the fraction of 

cases who escape from contact tracing, T is the time for which contact traced 

cases remain at large, τ1 is the time for which untraced asymptomatic cases 

remain transmissible and τ2 is the time for which untraced symptomatic cases 

remain transmissible before manifesting symptoms and (at least we assume) 

seeking quarantine. 

Putting all this together, we arrive at the retarded logistic equation 

 0

d
1 ( )

d

y y
m n y

t N

 
= − 

 
   , (2) 

as the final form of the dynamic epidemic model in the absence of vaccination 

and travel. Equation (2) uses delays rather than inverse-rates to express 

infection durations, which enables it to make very realistic predictions. For 

further details of derivation, we must refer to our prior study [17]. 
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VACCINATION ONLY 

Here we add vaccination without travel to the basic model (2). For this, we 

define three dependent variables : y (t) the cumulative count of corona cases 

among unvaccinated people, z (t) the cumulative count of cases among vacci-

nated people and v(t) the total number of vaccinated people. We now use the 

structure (0) to formulate the evolution equations for the disease; for 

conceptual clarity, we permute the terms on the right hand side as follows :  

Rate of emergence Probability of Per-case spread- Number of

of new cases target susceptibility ing rate at large cases
= 

       
       

       
 . (3) 

In this layout, the two terms involving cases rather than targets are adjacent 

to each other. 

Let us now formulate the equation for y (t), the unvaccinated cases. At any 

time, the total number of vaccinees is v and the total number of non-vaccinees 

is N − v. In this work, we assume that the disease as well as the vaccine confers 

permanent immunity (the disease with 100 percent probability and the 

vaccine only in those instances where it works), an assumption discussed in 

detail in §2. An unvaccinated person can be insusceptible only if s/he has 

already contracted and recovered from the disease; at any time the total 

number of recoveries (modulo the approximations of the previous 

Subsection) is y, the total number of non-vaccinees is N − v so the probability 

that a random non-vaccinee is susceptible is (N−v−y)/(N−v), which is 

1 − y/(N−v).  

As per the model assumptions, non-vaccinees and vaccinees have different 

interaction rates, and hence spreading rates, with the latter being higher. 

Consequently we shall replace the single value m0 with two values ml (low) 

and mh (high), which will be applicable to the two categories respectively. We 

assume that every at large case’s m (either l or h) spreading incidents per day 

are distributed among non-vaccinees and vaccinees in proportion to their 

population i.e. a fraction (N−v)/N of any case’s transmissions are to non-

vaccinees and a fraction v/N to vaccinees. We shall return to this point in §3.  

As for the number of at large cases, we take the asymptomatic fraction μ1 = 

4/5, which is towards the higher end of the spectrum. We take the contact 

traced fraction to be zero so that μ3 = 1. In Ref. [17] we have shown that 

contact tracing will indeed capture only a small percentage of total cases if 
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the asymptomatic fraction is high; moreover, contact tracing is managed by 

healthcare professionals many of whom will now be re-deployed to 

vaccination drive. We use the parameter values [S1] τ1 = 7 and τ2 = 3, so that 

the function n gets defined as 

 ( )
1 4

( ) ( 3) 7
5 5

n x x x x= − − − −    . (4) 

We assume that vaccinated cases have the same μ1, τ2 and τ1 as non-

vaccinated ones (details in §2), so that we can use this function n to count at 

large cases of both unvaccinated and vaccinated groups. Putting all this 

together, we have the equation 

 
d

1 ( ) ( )
d

l h

y y N v N v
m n y m n z

t N v N N

− −  
= − +  −  

   , or (5a) 

  
d

1 ( ) ( )
d

l h

y N v y
m n y m n z

t N N v

−  
= − + 

− 
   , (5) 

with the second line being a simple rearrangement of the first.  

Similarly we can formulate the equation for the vaccinees. By the model 

assumptions, the vaccine confers sterilizing immunity with probability η, so 

at any time, the number of insusceptible vaccinees is ηv and the number of 

susceptible vaccinees is (1−η)v. Among the latter, z people have contracted 

and recovered from the infection so they are insusceptible as well. Hence, the 

total number of susceptible vaccinees is (1−η)v − z and the susceptibility 

probability is this divided by v, which is 1−η − z/v. The fraction (N−v)/N in 

(5) will get replaced by v/N and the number of at large cases will remain the 

same as in (5), giving 

  
d

1 ( ) ( )
d

l h

z v z
m n y m n z

t N v
η

 
= − − + 

 
   . (6) 

 

Finally, we need an equation for v. We assume that vaccination takes place 

at a constant rate α (people/day). The longest that the vaccination drive can 

continue is until all non-vaccinees have either turned into cases or vaccinees 

i.e. when y + v equals the total population. Thus, we have 

 
  if  d

0  otherwised

y v Nv

t

α + 
= 


   . (7) 



 
5 

 

The stopping condition assumes that everyone is willing and able to receive 

the vaccine. It ignores ineligible people (such as children) and vaccine 

hesitant people. However, in almost all the runs considered in the Article, the 

outbreak and hence the vaccination drive are over long before the stopping 

condition (7) is actually attained, so this does not pose any trouble. 

Equations (5-7) provide the basis for all the simulations in the “Results → No 

travel” Section of the Article proper. A delay differential equation needs to 

be seeded with an initial function having the duration equal to the maximum 

delay involved in the problem, which is 7 days in this instance. The initial 

function we have chosen is y (t) = 10t, z (t) = 0 and v (t) = 70 for t belongs to the 

interval [0, 7], with the equations themselves being solved for t > 7. For the 

termination condition, we define the active case count at time t to be  

 ( ) ( ) ( 14) ( ) ( 14)a t y t y t z t z t= − − + − −    , (8) 

and terminate the run if a(t) < 1 for 14 consecutive days. 

We now present the mathematical definition of the mobility index Req. In the 

Article proper we have explained it through an intuitive example; here we 

make it rigorous. As we can see, Req does not appear as a parameter in (5-7) 

even though we have treated it like one in the Article. Actually, Req is directly 

proportional to m (either l or h). It can be shown [17] for the baseline model 

(2) that the reproduction number R is given by  

 

( ) ( )0 3 1 3 2 1 3 1

0

1 1 1

31
1

5

y
R m T

N

y
m

N

μ μ μ τ μ μ τ
 

 = − − + − +  
 

  
= −  

  

   , (9) 

if we substitute the numerical values we are using here. The starting value R0 

is defined at the beginning of the epidemic i.e. when y/N is nearly zero; thus 

we can say R0 = (31/5)m0. We use this proportionality to define Req in terms 

of m : 

 
31

5
eqR m=    . (10) 

Thus, unvaccinated people have Req = 1·15 means that ml = 1·15 × (5/31) 

= 0·186; vaccinated people have Req = 3 means that mh = 3 × (5/31) = 0·484. 

Similarly, vaccinee Req’s of 2 and 5 correspond to mh values of 0·323 and 0·807 

respectively.  
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We reiterate that Req is only an index which measures people’s mobility and 

is NOT the actual reproduction number of the disease during the epidemic 

evolution – we have expressed m in terms of R only because m is very difficult 

to measure but R for COVID-19 has been measured and found to be 

approximately 3 in the absence of social restrictions [21-24] (cited in the 

Article proper). 

 

TRAVEL ONLY 

Now we consider the case where there is travel but no vaccination. This 

situation will help us to develop the concepts needed to formulate the model 

with both vaccination and travel. We consider two regions, City 1 and City 

2, which are connected by travel. We assume that the total populations of the 

two cities do not change as a result of travel. We shall use subscripts 1 and 2 

to refer to variables related to the two cities. Let us focus on City 1 during the 

derivation. There are three mechanisms through which corona cases can be 

generated in City 1. The first is the familiar process, through internal spread 

of the virus in City 1. The second is through influx of cases from City 2 – 

since we are interested in a situation with no traveller quarantine, the 

imported cases will also spread virus in City 1. Indeed, at the very start of the 

pandemic, the outbreak in every country save one began with imported cases. 

The third mechanism is ancillary to the second but has a difference which we 

shall explain shortly. On the train or flight from City 2 to City 1, each 

travelling case will transmit the disease to some other people. In the Article 

proper, we have defined this number to be the travel amplification factor k. 

Thus, each case imported into City 1 will carry with him/her a baggage of k 

ancillary cases who will also spread the virus in City 1.  

The difference between the imported and the ancillary cases is the duration 

for which they remain at large. Some of the imported cases will have made 

their journey early on in their transmissibility period – they will do the bulk 

of the spreading in City 1 itself. Others however will have done the bulk 

transmission in City 2 before boarding the inbound vehicle. On average, 

travelling cases will remain at large for half the total time in each city. Thus, 

a travelling asymptomatic case will remain at large in City 1 for 7/2 days 

while a travelling symptomatic case will remain at large in City 1 for 3/2 

days. An ancillary case however will spend his/her entire transmissibility 
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duration in City 1 (we assume that the duration of the journey itself is 

negligible compared to the transmissibility period and that a case does not 

travel more than once within the transmissibility period).  

To mathematically account for the three generation mechanisms, we define 

three classes of cases in City 1, as follows : 

• y1, a case who contracts the virus in City 1 

• w1, a case who contracts the virus in City 2 and imports it into City 1 

• x1, a case who contracts the virus from an imported case on board the 

inbound vehicle to City 1 

As usual, the variables will stand for the cumulative counts of all the case 

classes. We also need a new function ñ(·) to describe the half-length stays in 

each city made by the travelling cases; analogous to (4) we define 

 
1 4

( ) ( 3/ 2) ( 7 / 2)
5 5

n w w w t w t= − − − −    , (11) 

as the number of at large half-time cases in either city. We can now embark 

on the development of the model equations.  

We start from the equation for y1. Cases generation is described as usual by 

(0). A question immediately arises regarding the susceptibility probability – 

how many of the travelled cases should we include among the immune 

population ? In other words, should we treat only y1 as insusceptible or 

y1+w1+x1 combined as insusceptible ? Also, what about the cases y1 who are 

lost to travel ? While it is unrealistic for a person to travel twice or more during 

his/her transmissibility period, it is certainly reasonable to travel multiple 

times during the immunity period. In the absence of detailed knowledge 

regarding travel patterns, we must make an approximation here. If we go with 

just y1, the model will likely yield more cumulative cases than reality and if 

we go with y1+w1+x1 then the model will yield less cases than reality. Erring 

on the side of caution is always preferable so we treat the susceptibility 

probability as 1 − y1/N. Fortunately, in actual runs, w and x turn out to be 

much smaller than y, so the error involved here is small.  

Calculating the number of at large cases involves a further subtlety. Recall 

that the definition of y1 includes every case who is generated in City 1 – both 

the ones who stay there throughout and the ones who get exported to City 2. 

The former spend the whole transmissibility period in City 1 while the latter 
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spend only half (on average), so the two categories must be considered 

separately. Since w2 identifies the exports from City 1, y1 − w2 must identify 

the others i.e. the ones who remain in City 1 throughout and transmit for the 

full duration. Since y1 − w2 is cumulative, the number of transmissible among 

these will be given by n (y1 − w2). The export cases w2 remain transmissible and 

at large for half the time, so their numbers in City 1 will be given by ñ rather 

than n. The import cases w1 will again spend half the duration in City 1, while 

ancillaries x1 will spend the full duration. Putting all this together, we get 

  1
0 1 2 2 1 1

d
1 ( ) ( ) ( ) ( )

d

y y
m n y w n w n w n x

t N

 
= − − + + + 

 
   . (12) 

 

Next in the line is w1 – the cumulative count of imports from City 2. For this, 

we introduce the travel fraction γ, already defined in the Article proper as the 

fraction of people of each city (here 2) who travel to the other city (here 1) 

every day. The same fraction γ will apply to the corona cases unknowingly at 

large in City 2. Since, by our assumptions only locally generated cases travel, 

the rate of influx from City 2 will be γ times the number of at large local cases 

in City 2 i.e. 

 1
2

d
( )

d

w
n y

t
γ=    . (13) 

 

The last case class to account for is x. For every one imported case w1, there 

are k vehicle-spawned cases x1. Hence,  

 1 1d d

d d

x w
k

t t
=    . (14) 

If we now assume (very plausibly) that x1(0) = w1(0) = 0 then we have a simple 

proportionality relation between x1 and w1. Hence we can remove x1 from the 

system altogether and replace it with kw1 wherever it appears. That is, we can 

rewrite (12) as  

  1
0 1 2 2 1 1

d
1 ( ) ( ) ( ) ( )

d

y y
m n y w n w n w kn w

t N

 
= − − + + + 

 
   . (15) 

With this, the equations for City 1 are complete.  

By analogy, we can write for City 2 
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  2 2
0 2 1 1 2 2

d
1 ( ) ( ) ( ) ( )

d

y y
m n y w n w n w kn w

t N

 
= − − + + + 

 
   , (16) 

and 

 2
1

d
( )

d

w
n y

t
γ=    . (17) 

Equations (13,15-17) constitute a coupled fourth-order system describing the 

spreading dynamics of coronavirus in two regions connected by travel. Here 

we have assumed that N and γ are the same for both cities; if that is not the 

case then we must ensure γ1N1 = γ2N2 so that the numbers of people travelling 

both ways are equal. 

 

VACCINATION AND TRAVEL 

We now combine the two preceding derivations to formulate the model for 

this situation. Fortunately, almost all the work has already been done. In each 

city we now need five compartments – y : locally generated unvaccinated 

case, z : locally generated vaccinated case, w : imported case, x : ancillary 

travel-generated case, v : vaccinee. Once again, x becomes proportional to w 

through the constant k (or rather k’, see below) and the variable count per city 

reduces to 4.  

The intention of our analysis is to study the effects of hassle-free travel of 

vaccinees, so we can ignore non-vaccinee travel altogether. We shall again 

need two spreading rates ml and mh for unvaccinated and vaccinated people. 

Since all travellers are vaccinated, they will have the high spreading rate in 

both source and destination cities. In the susceptibility probability, we will 

again include only the locally generated cases and none of the travelled cases. 

The definition of the amplification factor k assumes that every target is 

susceptible; this must be modified to account for the vaccine. If both cities 

have the same vaccine efficacy η, then k must get replaced by k (1−η); if the 

cities have different efficacies η1 and η2 then we will reduce k by the average 

efficacy i.e. replace k with k’ where 

 1 22
'

2
k k

η η− −
=    . (18) 

This assumes (realistically) that half of the passengers on the vehicle have one 

efficacy and half have the other efficacy. 
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We can now present the model. It is 

 
1 2 21 1 1

1
1 1

( ) ( )d
1 ( )

( ) ' ( )d
l h

n z w n wy N v y
m n y m

n w k n wt N N

 − +  −  
= − +   

+ +    
   , (19a) 

 
1 2 21 1 1

1 1
1 11

( ) ( )d
1 ( )

( ) ' ( )d
l h

n z w n wz v z
m n y m

n w k n wt N v
η

 − +    
= − − +    

+ +   
   , (19b) 

 1
2

d
( )

d

w
n z

t
γ=    , (19c) 

 
1 1 11
  if  d

d 0  otherwise

y v Nv

t

α + 
= 


   , (19d) 

 
2 1 12 2 2

2
2 2

( ) ( )d
1 ( )

( ) ' ( )d
l h

n z w n wy N v y
m n y m

n w k n wt N N

 − +  −  
= − +   

+ +    
   , (19e) 

 
2 1 12 2 2

2 2
2 22

( ) ( )d
1 ( )

( ) ' ( )d
l h

n z w n wz v z
m n y m

n w k n wt N v
η

 − +    
= − − +    

+ +    
   , (19f) 

 2
1

d
( )

d

w
n z

t
γ=    , (19g) 

 
2 2 22
  if  d

d 0  otherwise

y v Nv

t

α + 
= 


   . (19h) 

All simulation runs presented in the “Results → Travel” Section of the Article 

proper are based on the above eight coupled equations. 

For each simulation, we have taken the initial conditions in the interval t 

belongs to [0, 7] as y1 = y2 = 10t, v1 = v2 = 70 and z1 = w1 = z2 = w2 = 0, and have 

solved (19) for t > 7. For the termination condition, we again define active 

cases as  

 1 1 1 1 1 1 1 14
( ) ( ) ( )

t t
a t y z w y z w

−
= + + − + +    , (20a) 

 2 1 1 1 1 1 1 14
( ) ( ) ( )

t t
a t y z w y z w

−
= + + − + +    , (20b) 

and stop the run if both a1 and a2 are less than unity for 14 consecutive days. 

---- o ---- 
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 §2  MODEL ASSUMPTIONS AND THEIR EFFECTS 

Here we discuss some of the assumptions and approximations inherent in the 

model, the procedures for relaxing them, and the effects which they have on 

the results. For assumptions built into in the baseline model (2), we refer to 

Refs. [17,18]; here we consider only the approximations involved in 

extending the baseline to the vaccination and travel cases. 

Vaccine immunity : As mentioned in §1, we have assumed that vaccine 

confers sterilizing immunity, i.e. complete immunity against contraction, 

symptomaticity and transmission of COVID-19, with probability η and zero 

immunity against contraction and transmission with probability 1−η. 

Currently, the Pfizer and Moderna trials [1,2] have focussed only on 

reduction of symptomatic infections. The Oxford vaccine [3] has included 

asymptomatic cases in the phase 3 analysis and found only a 30 percent 

reduction in asymptomatic infections in the vaccine group relative to the 

placebo group (compared to a 60 percent reduction in symptomatic 

infections). However, the absolute number of asymptomatic cases found in 

this study is quite small, so more data needs to be collected on this issue.   

If the Oxford results are indicative of a general trend, then our assumption of 

equal immunity across all case classes will result in an undercounting of cases 

since our model will yield fewer asymptomatic vaccinated cases than reality. 

This is counterbalanced by our assumption that vaccinated cases have the 

same transmission properties (transmissibility and duration) as unvaccinated 

ones. It is possible (and intuitive) that vaccine cases will actually have lower 

viral loads and faster recovery period, which generate an error in the opposite 

direction. To the best of our knowledge, so far, there is nowhere near enough 

information which can enable us to determine more appropriate parameter 

choices. However, when such information does become available, it will not 

be difficult to incorporate it into the model by changing the values of η and of 

μ1, τ1 and τ2 for vaccinated cases.  

In our model we have not made any comment regarding the severity-reducing 

immunity of the vaccine. That would have been relevant for counting 

hospitalizations and deaths among the vaccine group, which we have not 

attempted. In the runs we have performed however, this quantity is of 

secondary importance. For in Table 1 with 75 and 90 percent efficacy vaccine, 
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we see that an overwhelming majority of the total cases occurs in the 

unvaccinated group, so the bulk hospitalizations and deaths will also come 

from that group. Only with the 60 percent effective vaccine do we see an 

appreciable count of vaccinated cases – even then, they are an absolute 

minority. It remains true however, that if the vaccine has a certain or near-

certain rate of reducing hospitalizations and deaths (as seems to be the case 

with all the vaccines released so far), then that will generate considerable 

mental peace during the selective relaxation process and will enable entities 

like universities where many/all have been vaccinated to reopen without a 

second’s thought.   

A further assumption we have made is that the immunity conferred by the 

disease as well as the vaccine is permanent. This assumption is valid so long 

as the immunity duration is longer than the evolution time of the outbreak, 

which is eight months to a year in the situations we have considered. For the 

disease itself, antibodies as well as cellular immune responses do seem to be 

durable over at least a 6-7 month period, the longest studied so far (a mini-

review of literature on this topic appears in Ref. [20], while Ref. [S2] is a 

recent update). As for the vaccine, Moderna [S3] and ICMR/BB [5] have 

reported durable immune responses for at least 3 months, with the titre 

profiles being similar to those generated by symptomatic COVID-19 

infection. Time alone will tell us the durability of vaccine immune response, 

but so far we see no reason to deviate from the permanent immunity 

assumption. We hope that it shall prove possible to accelerate the vaccination 

drive with time and ensure that the disease is eliminated before immunity 

runs out.  

Initial and terminal conditions : The assumption that there are zero pre-

existing cases at the start of the vaccination drive is an under-estimate; in 

some regions at least, a significant fraction of the population has already been 

immunized. In other regions however, the immunized fraction might not be 

too large. Pre-existing recoveries can influence the case trajectories in two 

ways : (a) for given ml and mh it can make the actual reproduction number 

lower than the model and hence terminate the epidemic faster and with lower 

caseload, (b) it can achieve the reproduction numbers of our simulations at 

higher levels of mobility especially among non-vaccinees and hence equal our 

infection control performance at a lower level of intervention. At the same 

time however, the presence of a significant number of at large cases when the 
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vaccination drive starts can increase the vaccination fault ratio beyond the 

model predictions. The assumption of 70 pre-existing vaccinees has no 

impact other than to prevent division by zero when calculating the fault ratio. 

The terminal condition of less than one active case for a sufficiently long time 

is an eminently plausible measure of the true end of the outbreak. The number 

14 (twice) in the definition of the condition might appear somewhat arbitrary. 

The choice is harmless since changing that number changes the cumulative 

case counts by minuscule amounts. At any rate, when the absolute number 

of cases is very low, a lumped parameter model breaks down. All that one 

can talk about are probabilities, and for that one needs an agent-based model. 

Our model (and any other differential equation model) is good only for 

predicting when transmission will have become significantly reduced, and for 

that any physically plausible termination condition is adequate. 

Vaccination fault ratio : The question we want to address is “If I receive the 

vaccine and move about freely, what is the probability that I shall actually 

contract the disease during the evolution of the outbreak ?” As discussed in 

the main Article, the complement of the efficacy i.e. 1−η is a gross 

overestimate since it does not factor in the two-person nature of transmission. 

There is no single metric in fact which can help us to answer this question. 

An approximate indicator will be the ratio of the total number of vaccinated 

cases to the total number of vaccinees. However, this index will be artificially 

lowered by the fact that during the tail-phase of the epidemic, there are hardly 

any new cases but lots of new vaccinees. Hence we have opted to evaluate 

the ratio at every point during the disease evolution and report its maximum 

value as the vaccination fault. Other metrics can also be calculated from data 

sets, if desired. In the “Results → Travel” section of the main Article, we have 

calculated the fault f as the maximum of the ratio z1/v1, ignoring the imported 

and travel-generated cases. Any error arising from this will be small and will 

not change the fact that the fault is always 1 percent or less. 

Vulnerability- or transmissibility-structuring : The effects of COVID-19 on 

people of different age groups are widely heterogeneous. Similarly, there are 

some people whose profession forces them to interact with many others every 

day, while other people can lead reclusive lives until the pandemic is over. 

Our models (5-7) and (19) do not feature such structuring. The process for 

incorporating structuring has been demonstrated in Ref. [17], and we leave 

the consideration of the results for future study.   ---- o ---- 
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 §3  ADDITIONAL RESULTS AND DISCUSSION 

The Article proper has space for only the most impactful results; here we 

investigate different parameter combinations, present the epidemic time 

traces and discuss several other issues which we think are of strategic interest.  

 

NO TRAVEL 

Table 1 of the Article proper contains a paradoxical observation. In eight of 

the nine situations considered, the epidemic duration is under 400 days, but 

in the worst case (least effective vaccine, most transmissible virus) it is almost 

1000 days. How did this happen ? To resolve this, we plot the epidemic time 

trace in this instance, as Figure S1 below. 

 

Figure S1 : Time trace of evolution of the epidemic for the worst-case situation 

considered in Table 1 i.e. η = 60 percent and vaccinee mobility Req = 5. Blue line 

denotes the unvaccinated cases, green line the vaccinated cases and red line the total 

number of vaccinees. Grey and cyan bars denote the epidemiological curve or epi-

curve, i.e. the weekly case counts in the unvaccinated and vaccinated groups 

respectively. We have scaled them down by a factor of seven so that the envelope of 

the bars might be the derivatives y  and z . The legend W/7 indicates this. ‘k’ denotes 

thousand and ‘L’ hundred thousand. 

 

We can see that there is a second wave of cases in the vaccinated group, 

starting about the time the vaccination drive stops. With partially effective 
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vaccine, a vaccination drive which clears people to higher mobility acts like 

a gradual reopening instead of a control measure, and fuels a second wave. 

Reopening-induced second waves have been characterized in our prior work 

[20] and have been seen in USA and many countries in western Europe. Here 

we see a similar phenomenon, which explains the anomalously high 

epidemic duration. 

As discussed in §1, we have characterized public health interventions through 

the spreading rate m, which itself is a product of two numbers – the interaction 

rate and the transmission probability conditional on susceptible target. In 

writing the equations (5,6), we have assumed that the interaction rate is low 

for non-vaccinees and high for vaccinees, that these interactions are 

distributed among the two groups in proportion to their populations and that 

the transmission probability given target susceptibility is constant 

independent of the nature of the target. These assumptions were motivated 

partly by a desire for simplicity; we could also have written (5,6) as follows : 
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which features four m’s instead of two.  

Equation (21) can account for situations like vaccinees preferring to interact 

only with other vaccinees, wearing masks in the presence of non-vaccinees 

etc. In an ideal situation, m1, m2 and m3 all ought to equal ml and only m4 

equal mh – vaccinees should in principle observe all restrictions such as 

minimizing interactions and masking whenever there are non-vaccinees 

around. This situation would lead to lower case counts than what we have 

found in Table 1 of the Article proper (which has m1 = m3 = ml and m2 = m4 

= mh). In a worst-case situation however, only m1 may remain ml and all of 

m2, m3 and m4 become mh – this will happen if neither vaccinees nor non-

vaccinees feel any qualms about interacting freely with the other class, 

believing that one vaccine will take care of two people. This would lead to 

higher case counts than our estimates.  

To analyse this in more detail, we consider the situations of Table 1 in the 

above best- and worst-case scenarios. That is, we take the same ml (0·186 

corresponding to Req=1·15), the same three vaccine efficacies of 60, 75 and 90 
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percent and the same three values of mh (Req’s of 2, 3 and 5), and calculate the 

durations and case counts when (a) “B” : m1 = m2 = m3 = ml, m4 = mh and (b) 

“W” : m1 = ml, m2 = m3 = m4 = mh. We present the results in Table S1.   

η\Req 2 3 5 

60 
B : {315, 11k} 

W : {321, 68k} 

B : {906, 39k} 

W {264, 1·23L} 

B : {715, 88k} 

W : {268, 1·69L} 

75 
B:  {263, 6·6k} 

W : {329, 28k} 

B : {271, 6·8k} 

W : {288, 83k} 

B : {317, 7·5k} 

W : {251, 1·33L} 

90 
B : {232, 4·5k} 

W : {263, 7·1k} 

B : {233, 4·5k} 

W : {311, 20k} 

B : {234, 4·6k} 

W : {277, 73k} 

Table S1 : Best (B) and worst (W) case scenarios with respect to vaccinee and non-

vaccinee mobility for the situations considered in Table 1 of the Article proper. For 

each scenario we show the epidemic duration T (days) and the cumulative case count 

X in curly brackets, thus {T, X}. The symbol ‘k’ denotes thousand and ‘L’ hundred 

thousand. 

 

For 75 and 90 percent vaccine efficacy, we can see a significant difference 

between the infection counts in the best- and worst-case scenarios, with the 

values given in Table 1 of the main Article lying in between these two 

extremes, which is consistent. In fact, for Req = 5, the gap between the various 

outcomes is tremendous. It shows very strong rewards to be had if vaccinees 

relax their guard only in the presence of other vaccinees and not in the 

presence of non-vaccinees. We can also see however that this difference is 

absent with the 60 percent effective vaccine – only the best-case scenario with 

the lowest Req features an acceptable caseload while all the other situations 

involve high caseload. 

If 75 makes a good vaccine and 60 a bad vaccine, then this leads to another 

question – what is the cutoff ? How does the infection control performance 

depend on vaccine efficacy ? In Tables 1 and S1, we had space for only three 

discrete efficacies; what happens if we were to treat the efficacy as a 

continuous variable ? To gain insight, we consider the interaction situation of 

Table 1 (not S1), fix vaccinee Req = 3 and plot the duration T together with the 

total case count X as a function of vaccine efficacy between 50 and 100 

percent. This plot is shown in Figure S2 below. 
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Figure S2 : Cumulative caseload (blue) and epidemic duration (green) as functions of 

the vaccine efficacy.  

 

We can see that as the efficacy decreases from 100, the caseload features a 

slow increase upto about 85 percent efficacy, followed by a much sharper 

increase as efficacy reduces below 75. Thus, for this parameter combination, 

80 or 85 percent may be treated as a “cutoff” for acceptable efficacy. This 

cutoff will vary depending on the interaction parameters – for example if we 

replot Figure S2 with vaccinee Req = 5 and the best-case interaction situation 

from Table S1, then we get the following (Figure S3). 

 

Figure S3 : Cumulative caseload (blue) and epidemic duration (green) as functions of 

the vaccine efficacy.  
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In this case, we can see a big jump in the curves at 74 percent vaccine efficacy 

– this jump corresponds to a bifurcation where a one-shot solution (Figure 1) 

cedes to a two-wave solution (Figure S1). Before the jump i.e. at high efficacy, 

caseload is almost independent of efficacy while after the jump it increases 

rapidly with decreasing efficacy. Evidently, with this interaction situation, 74 

is the cutoff efficacy – note that the argument based on R in the Discussion 

Section of the Article proper would have predicted this cutoff to be 80. 

There are two ways of hastening the end of the epidemic beyond the durations 

we are finding here. One is to increase the rate of vaccination. For example, 

doubling the vaccination rate for the situation of Figure 1 in the Article proper 

causes the epidemic to end at 264 days instead of 352. We hope that as time 

elapses, more and more vaccines become available so that the vaccination 

drive and hence the elimination efforts can increase in pace. The second way 

is preferential vaccination of shopkeepers, bankers, bus conductors etc who 

are forced to interact with many people as part of their jobs. This strategy has 

been mentioned in several recent studies [7-10] and can lead to substantial 

gains in time as well as caseload. 

We note that with selective relaxation, the end of the epidemic is being 

brought about not by achieving high vaccination coverage (herd immunity) 

but by slowly and systematically starving the virus of new targets in both the 

unvaccinated and vaccinated groups. To see this, consider the case η = 90 

percent and vaccinee Req = 3 from Table 1. The outbreak ends at 259 days by 

which time 1,55,000 vaccines have been distributed. The total number of 

immune people (successfully immunized vaccinees plus actual cases) is 

1,46,000 which is significantly less than the 67 percent immunization level 

required to achieve herd immunity with an R of 3. As another example, with 

η = 75 percent and vaccinee Req = 5 in Table S1, the immunized fraction at the 

end is almost exactly 50 percent and not 80 percent. 

 

TRAVEL 

We first estimate typical values of the amplification factor k for normal (mask-

free) travel situations. For air travel, each window/aisle seater case will infect 

the middle seater, while each middle seater case will infect both the window 

and aisle. Even though the ventilation in an aircraft is good [S4], normal 

travel involves conversation and occasional physical contact between 
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neighbouring passengers. Furthermore, each infected passenger will likely 

infect two others (nearest neighbours) in the airport seating area. There might 

be two further neighbours in the boarding queue but the exposure time here 

will be small and transmission will be less than certain in this case. Overall, 

very approximately, air travel might generate a k in the range 4-6. We can 

expect an analogous situation for rail travel in western countries, where the 

seating is similar. In Indian Railways, the world’s busiest railway network, 

the AC First class features four people in a compartment, the AC 2-Tier class 

features six and the AC 3-Tier and Sleeper classes feature eight. In these 

situations we can expect approximate k values of 3, 5 and 7 respectively.  

We now present a few time traces of the epidemic evolution for the situations 

considered in Tables 2 and 3 of the Article proper. First, we take an instance 

where City 2 has negligible impact on City 1. Consider the γ = 20 and k = 5 

situation from Table 2. In Figure S4, we show the time traces of the two cities 

with no travel. 
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Figure S4 : Time traces of the epidemic in City 1 (vaccinee Req = 3 and η = 90 percent) 

and City 2 (Req = 3 and η = 75 percent) when there is no travel. In each plot, blue line 

denotes unvaccinated cases, while green line denotes vaccinated cases; the 

corresponding epi-curves are in grey and cyan respectively. The quantities w1 and w2 

appear in the plot legend but not in the plot itself because they are both zero, as they 

should be. ‘k’ denotes thousand and W/7 weekly cases scaled down by a factor of 

seven. 

 

The time trace of City 1 here is the same as Figure 1 of the main Article, 

which acts as a check on our numerical work. The primary difference between 

the two cities lies in the time when they attain their respective peaks – cases 

in City 1 peak at about 80 days while vaccine cases in City 2 (the ones who 

travel) peak at about 150 days. With travel coupling, the significant quantity 

is the spreading profile in City 1, so we present that below as Figure S5. 
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Figure S5 : Time traces of the epidemic in City 1 (Req = 3 and η = 90 percent) when 

there is travel to and from City 2. Blue line denotes unvaccinated cases, green line 

vaccinated cases and red line travelled cases – for the last one, we club together the 

imported and vehicle-generated cases. The corresponding epi-curves are in grey, 

cyan and magenta respectively. ‘k’ denotes thousand and ‘W/7’ weekly cases scaled 

down by a factor of seven. 

 

We can see that the peak in City 1 is also not delayed on account of the influx. 

For another example, we take an instance where City 2 completely spoils City 

1’s infection control performance. Consider Table 3, where City 1 remains as 

it was, but the vaccine efficacy in City 2 is reduced to 60 percent. In particular, 

focus on the ‘worst’ cell where γ = 100 and k = 10. In Figure S6 we present a 

plot of City 2’s performance in the absence of travel. 
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Figure S6 : Time traces of the epidemic in City 2 (vaccinee Req = 3 and η = 60 percent) 

when there is no travel. Blue line denotes unvaccinated cases and green line 

vaccinated cases. The corresponding epi-curves are in grey and cyan respectively. 

The quantities w1 and w2 appear in the plot legend but not in the plot itself because 

they are both zero. ‘k’ denotes thousand and ‘W/7’ weekly cases scaled down by a 

factor of seven. 

 

This is qualitatively similar to Figure S4 (bottom panel) except that the actual 

numbers involved are much higher. Now we present the trajectories in City 1 

when coupled strongly to this rogue city (Figure S7). 
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Figure S7 : Time traces of the epidemic in City 1 (Req = 3 and η = 90 percent) when 

there is travel to and from City 2 (Req = 3 and η = 60 percent). Blue line denotes 

unvaccinated cases, green line vaccinated cases and red line travelled cases – for the 

last one, we club together the imported and vehicle-generated cases. The 

corresponding epi-curves are in grey, cyan and magenta respectively. ‘k’ denotes 

thousand and ‘W/7’ weekly cases scaled down by a factor of seven. 

 

Here we can clearly see the effect of the travel. City 1 starts off as it did in the 

absence of travel (Figure S4) but by about the 100-day mark, travel is 

introducing as many new cases as it was generating on its own. So, instead of 

flattening out, the curve now becomes enslaved to that of City 2’s vaccinees 

and peaks together with City 2. Only when the disease comes under control 

in City 2 does it also follow suit in City 1. 

 

SOCIOECONOMIC AND POLICY ASPECTS 

With an effective vaccine, immediate and preferential relaxation of 

restrictions for vaccinees appears to be a quick and surefire path to 

elimination of COVID-19 in time while achieving maximum socioeconomic 

recovery. The selective relaxations however may cause negative emotions 

between people who get vaccinated earlier and those who get vaccinated 

later. To the largest extent, there is nothing to be done about this rift – while 

vaccine allocation policies can come up with a priority order which 

maximizes the common good, it will be inevitable that one healthy young 
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well-paid software engineer will get the shots and hence a ticket to freedom 

two months before another healthy young well-paid software engineer. 

The negativity arising from such heterogeneity can be alleviated through a 

public information campaign – the impact of the virus itself is very 

heterogeneous and that is outside our control, so a bit of manmade inequality 

during the endgame phase is also tolerable. This is especially true since 

continuing blanket restrictions until the disease has been eliminated will 

entail tremendous financial losses on the part of the travel industry and many 

other businesses. Nonetheless, to avoid unhealthy competition, employers 

and universities who arrange for vaccination of employees and/or students 

might wait to initiate the general vaccination drive (excluding frontline, high-

interaction and high-risk people) until they have received all the requisite 

doses.  

During selective relaxation, public health authorities will have to work to 

ensure that minimal close and unmasked interaction occurs between 

vaccinees and non-vaccinees – as we saw by comparing Tables 1 and S1, a 

lot of gain can be achieved through this. To facilitate this, vaccinees may be 

given apparel or badges which prominently advertise their status. In 

situations where physical segregation of the two classes is impossible, like 

shops and restaurants, mask and separation requirements might need to 

remain in place for the vaccinees as well. If a chain store or eatery has 

multiple similar outlets in the same city, like McDonald’s, it might designate 

some as vaccinee only with no restrictions and others as common spaces with 

restrictions. In airports, regions occupied by vaccinees should be screened off 

from those occupied by non-vaccinees. In places where this is not possible, 

for example at the security checking area (and it will almost certainly be 

impossible on railway platforms), vaccinees should also observe all 

precautions. Masking at just the frisking queue or the station is a negligible 

inconvenience compared with masking and face-shielding throughout a flight 

or a long-distance train. 

A plethora of results supports the assertion that a vaccine of 80 percent or 

higher efficacy can act as the basis for an immunity passport while a vaccine 

of 60 percent efficacy cannot, unless the virus transmission rate is already 

low. Hence, research into development of more efficacious vaccines should 

continue even as the early candidates are administered. The efficacies of 

existing vaccines should also be monitored for socio-demographic deter-
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minants if any. For example, if Vaccine A has 90 percent efficacy in the 18-

50 age group and 40 percent in the 65+ age group while Vaccine B has 70 

percent across all age groups, then younger people should be given Vaccine 

A and older people Vaccine B. One way of measuring efficacy “in the field” 

as opposed to in a placebo-controlled trial setting is by using the following 

definition, which yields the efficacy E(t) as a function of time : 
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It has been shown in Ref. [S5] that this definition yields E(t) very close to η 

during the bulk evolution of the epidemic.  

A placebo-free definition of efficacy can also help with expediting vaccine 

trials. Phase 3 trials are an essential component for determining efficacy, and 

those require the voluntary participation of 25,000 people or more. As 

approved vaccines become increasingly available, people will be 

correspondingly reluctant to participate in a trial for a new candidate, even if 

it promises better results. To encourage participation, the placebo arm of the 

trials may be deferred and all trial participants offered access to the vaccine, 

so that they can at least have “jumped the queue” if the undertrial vaccine 

does secure approval. Equation (22) may be used to compute the efficacy 

from such a trial. 

In conclusion, we look forward to the day when we can get an effective 

vaccine, doff our mask and hop onto a flight headed back to life as we knew 

it, and we hope that this happy day arrives sooner rather than later. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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